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We present a new class of techniques for the solution of the chemical and phase equilibria
problem for reacting species in a closed system. The minimisation of the Gibbs free energy
for all the species in the system is conducted using the technique of simulated annealing (SA).
The SA objective function incorporates non-ideal equations of state. This new approach
is demonstrably able to solve multi-species and multi-phase LTCE problems in ideal-gas
solutions, ideal solutions and mixtures of ideal and non-ideal solutions.

1. Introduction

The determination of the species composition of a reacting, closed system at
equilibrium is a problem in chemical physics which is of major industrial importance,
and yet one for which no efficient yet flexible solution method has been developed.
In this paper, we wish to present the application of a new class of techniques for the
solution of this problem, which has resulted in a method that is both highly flexible
and applicable to every instance of a chemical equilibrium problem. The new method
involves the application of the simulated annealing (SA) algorithms, based on the
processes culminating in thermal equilibrium, found in physical annealing [7].

The chemical equilibrium problem arose here in the context of heat exchanger
fouling studies [2,5]. In these studies, the chemically frozen boundary layer (CFBL) [8]
theory provides a means of calculating condensation deposition, based on an abbre-
viated flux law for boundary layer mass transport. The resultant species composition
is subject to local thermochemical equilibrium (LTCE) constraints and controlled by
transport properties predicted by the first order Chapman–Enskog theory [1]. A broad
classification of the many other subject areas in which the CE problem arises is given
by Smith and Missen [9]. Important examples include chemical kinetics (inorganic,
organic and analytical) and energy conversion processes.

Of the two main approaches currently used for the solution of this problem, the
first approach requires knowledge of the reaction mechanisms amongst the species in
the system [2,5]. These reaction mechanisms are then expressed in terms of equations
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which involve the equilibrium constant for each reaction. The equilibrium constant
is then calculated for each reaction mechanism from the difference in the Gibbs free
energies of the reactants and products. The second, more popular approach, minimises
the total Gibbs free energy for all the species in the system. Our previous work has
concentrated on the first approach [5] which resulted in good estimates for the LTCE
calculation but has several drawbacks including requirement of prior knowledge of the
reaction mechanisms and good initial estimates for the main species in the system [1].
In this paper we will outline the formulation and solution of the problem via SA.

Section 2 presents a brief outline of the use of non-ideal equations of phase and
how such models can cause significant differences in chemical equilibrium calculations
which are based upon ideality. In section 3, we present the main features of the
extension of our previous work [6] to a class of problems involving significant non-
linearities in the objective function to be minimised, i.e., those which assume more
than one phase for the species in the system and where mixtures of ideality and non-
ideality are assumed. The extensions embodied in this work demonstrate that the SA
method is able to handle multi-phase equilibrium problems in a highly satisfactory
way. Computational experiments are reported which show how the algorithm may
easily be tailored to specific models for species’ equations of state and phase. We will
also show how the algorithm produces solutions at least as good as those produced by
existing methods, methods which cannot readily be tailored in this way. The method
is demonstrated by minimising the highly non-linear and non-ideal non-random two-
liquid (NRTL) equation for modelling liquid phases. We then relate the results to
existing approaches. In section 4, we discuss the relationship between the extensions
to phase variability in the models and techniques used in this paper, and important
features of the combustion models, to produce a framework for the prediction of
important multi-phase dew-point calculations. Such calculations are, for the class of
problems under discussion, highly complex, involving a sequence of successive multi-
species chemical and phase equilibria problems.

2. Non-ideal expressions in chemical and phase equilibria calculations via
simulated annealing

In this section we summarise the stoichiometric extensions [6] and relate this to
the crucial incorporation of phase variability in the chemical equilibrium calculations.
The most important feature of the above approach is that the chemical stoichiometry
of the system is independent of the phases in which the species are assumed to exist,
and is also independent of the equations used to predict Gibbs free energy in each
phase. Thus, the major modifications required to the new approach to handle phase
change and/or non-ideal gases and liquids is in the objective functions assumed for such
species. In this way, the SA approach benefits from the advantages of the deterministic
stoichiometric algorithms [9] without suffering from their local optimisation defects.

The modifications described in the previous paragraph in fact are a feature of
the important generalisation of the chemical equilibrium problems to those involving
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phase change. This gives rise to a consideration of the phase equilibrium problem,
in which, for a closed system of species, the amount of each species occupying each
phase must be determined accurately. In the combustion models this problem arises
at the dew-points [4,5] of each the given species, where certain amounts of the given
species occupy different phases. Thus, at chemical and phase equilibria, we are able to
predict the rate of fouling due to the condensation of salts, as well as the temperature
this occurs.

A major difficulty in the incorporation of phase equilibrium calculations in the
chemical equilibrium calculation is that, in order to obtain accurate estimates from the
minimisation procedure for the amounts of salts deposited, a highly non-linear and non-
convex equation of state must be used to model the Gibbs energies of species in liquid
phases, since such phases are typically non-ideal [9]. As is well-known, such equations
of state are powerful in accurately predicting the highly complex behaviour within
the species system, and yet are sufficiently complex themselves to defeat most current
deterministic optimisation algorithms. The problem is crucial in combustion modelling,
since this involves simultaneous chemical reaction and phase change at species dew-
points. Hence, each of the species must be modelled as existing simultaneously in two
or more phases. This gives rise to non-linearities in the objective function.

3. Minimisation of Gibbs free energy in non-ideal systems via simulated
annealing

This section develops the ideas of objective function modification, and its relation
to the combustion modelling work. Here we discuss how to implement the non-random
two-liquid (NRTL) equation [3] for describing non-ideal liquid phases mixed in the
system with ideal gases. This presents a cost function for minimisation which is highly
non-linear and non-convex in the objective. The NRTL equation is an equation which
has the important property of being able to represent the mixing of multi-component
systems via binary parameters. There are three such parameters in each pair of species
in liquid form in the system under consideration.

3.1. NRTL equation for non-ideal liquid phases

The following is an example of the NRTL equation [4]; when all species present
are in liquid phase,

GkL =
nc∑
i=1

xik

(
nc∑
j=1

xjkmij∑nc
l=1 xlkφlj

+ lnxik

)
. (1)

Note that the gas constant R and the temperature T do not appear explicitly in (1),
since they are assumed to be embodied in the appropriate algorithm parameters. Here
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xik is a variable describing the mole fraction of species (i.e., ‘component’, since no
chemical reaction is assumed to occur at this stage) i in phase k, given by

xik =
zik∑nc
i=1 zik

, i = 1, 2, . . . ,nc, k = 1, 2, . . . ,K, (2)

where nc is the total number of species and K is the number of phases. Here zik is
the variable describing the number of moles of species i in phase K. The entities mij

and φij are given data in the NTRL model, specific to the system under study and
corresponding to an important feature of this model, in that it takes explicit account
of (liquid) species molecular interactions. The total number of moles here is denoted
by Z,

Z =

N∑
i=1

Zi, (3)

where Zi is the number of moles of species i and N is the total number of moles
equal to nc. In the general chemical equilibrium problem N = M + 1. When liquid
and vapour phases are assumed present in the system, as in the combustion models at
dew-points, the expression in (1) is modified to

GkL =
nc∑
i=1

xik

(
nc∑
j=1

xjkmij∑nc
l=1 xlkφlj

+ lnxik + lnP sat
i

)
(4)

with P sat
i the saturation pressure of the ith species, and the vapour expression is

assumed to be of an ideal form,

GkV =
nc∑
i=1

xik(lnxik + lnPi). (5)

The following equations are used to derive the parameters above [4]:

φij = exp(−αijtij), (6)

mij = tijφij , (7)

αij =αji, (8)

αii = 0, (9)

tii = 0. (10)

Problem-specific values for the terms tij , φij , αij and Zi are given in the examples
following our description of the new extension to the recent SA approach. Finally,
assuming no chemical reactions (i.e., only phase equilibrium), the constraints on the
problem are

K∑
k=1

zik = Zi, zik > 0, i = 1, 2, . . . ,nc, k = 1, 2, . . . ,K. (11)
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The overall expression for Gibbs free energy calculation is thus

G(K, t,x, y) =
K∑
k=1

nc∑
i=1

zikG
k
tk

(x), (12)

where tk is one of the phase types {V ,L,S}.
Earlier work on the solution of LTCE problems via the SA algorithm [6] discussed

the need to incorporate two important extensions within that method; the assumption
of non-ideal behaviour of the gases present in combustion models, and the need to
predict the amounts of salt deposited in the given systems as a function of temperature.
The first problem is effectively solved in the rest of this paper, where we describe how
to solve the minimisation of Gibbs free energy for phase equilibrium using SA. The
second problem is also solved, by the incorporation of the dew-points of the respective
species as saturation pressures within the NRTL equations (2)–(11).

The overall model for determining species phase and chemical equilibria in such
systems uses the elemental abundance matrix for specifying the closed nature of the
system [9]. In the phase equilibrium problem demonstrated here, the constraints (11)
alone require to be satisfied. Nevertheless, for chemical and phase equilibria problems
such as those occurring in the combustion models, the modification to the following
method is straightforward, requiring only the inclusion of the stoichiometric matrix
and associated perturbation operators discussed in the previous section.

Note that due to the assumed interactions between components, a component may
exist in more than one liquid phase. Thus, the phase equilibrium problem in its most
general form considers the number of phases in which a component is present to be
a variable for optimisation [4]. This most general form of the problem is considered
here, and the examples solved later involve components existing in more than one
liquid phase.

3.2. Solution representation scheme, perturbation operators and linear update
mechanisms for NRTL minimisation

The discussions of the previous section highlight the fact that, within the SA-
based approach [6], solution representation schemes, perturbation operators and cost
update mechanisms used for the phase equilibrium problem here must, in the absence
of penalty functions, generate a sequence of solutions (i.e., a sequence of z matrices)
which satisfy equation (11), and which asymptotically minimise the Gibbs energy
functions described by the addition of (4) and (5). Clearly, the simplest and most
efficient such perturbation operator involves the interchange of mole numbers, for a
given component, between phases. Thus, for example, if the system composition is
described by the matrix z as follows (the species list is reproduced from Mulholland
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et al. [6] but the respective mole numbers are cited for example only):

z =

NaOH
Na2SO4

Na2CO3

Na
(NaOH)2

SO2

SO3

CO2

H2O
O2

(l) (g)

0.5 0.5
0.64 0.2
0.24 0.4
0.5 0.6
0.12 0.22
1.25 0.55
1.4 0.76
0.75 0.88
0.6 0.12
0.35 0.1


(13)

where (l) and (g) refer to simple liquid and gas phases, respectively, and zik counts
the number of moles per phase for phases k = (l), (g), then a fast perturbation operator
can select a species at random from the species list and ‘switch’ a randomly chosen
number of moles between phases. This satisfies the constraints (11), if the random
amount is bounded appropriately. For the rest of this discussion, we restrict our
attention to the main details of the phase equilibrium problem, noting that the methods
presented hereinafter generalise using the mechanism cited for chemical equilibrium
calculation.

This generalisation, as discussed later, produces a new method for simultaneously
determining not only the amounts of each species present in the system at a given
temperature, pressure and initial feed (itself a computationally difficult problem for
standard methods), but also the particular phases in which each of the species are
present. This can then be used, after suitable parametrisation of the new method, for
predicting combustion fouling rates via the models described previously [2,5].

For the purposes of algorithm initialisation, we note that for the problem under
discussion, a suitable starting point, satisfying (11), is to take

zik =
Zi
k

, (14)

that is, to assume initially an equimolar division of each species amongst the various
phases. Often, one assumes, after practical experimentation with the real physical
system, that only certain species are present at a given temperature and pressure, and
so some species will never be present at certain phases [10]. However, the model
formulated here, and the new algorithmic approach possess two important properties.
Firstly, the system composition arising from the algorithm termination is independent of
the initial choice in (14), a property possessed by few of the current methods. Secondly,
the algorithm typically finds global minima of the given problem, so determining the
actual constituents within the various phases. In fact, any initial values satisfying (11)
may be taken.
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The calculation of the updated cost function arising from the sum of (4) and (5)
can be carried out quickly here due to the simple nature of the perturbation op-
erator described. This is done by calculating the update by a series of additions
and subtractions. As an example, we shall assume that V vapour phases, L liq-
uid phases and S solid phases are present in the system and use the following
phase indexing system. If phase k is such that 1 6 k 6 V , then this corre-
sponds to a vapour phase, if V + 1 6 k 6 V + L, then this k corresponds
to liquid phase, and if V + L + 1 6 k 6 V + L + S, then k corresponds to
solid phase. Now suppose that zmp := zmp + ε, zmq := zmq − ε, i.e., after ran-
dom perturbation the amount of species m in the vapour phase p increases by ε
moles, and that in some phase q decreases by ε (ensuring molar balance). Thus,
the change in contribution to overall Gibbs energy from equation (5) is calculated
from

(zmp)′ := zmp + ε, (zmq)
′ := zmq − ε, 1 6 p 6 V , q > 1, (15)

nc∑
i=1

(zip)
′ =

nc∑
i=1

zip + (zmp)′ − zmp, (xmp)
′ =

(zmp)′∑nc
i=1(zip)′

, (16)

and where the new Gibbs energy for vapour phase p can be found by updating the
expression (5) when it is written in terms of mole numbers,

GkV =
nc∑
i=1

xik(lnxik + lnPi) =
nc∑
i=1

zik∑nc
r=1 zrk

(
ln zik − ln

(
nc∑
r=1

zrk

)
+ lnPi

)

=

∑nc
i=1 zik ln zik∑nc

r=1 zrk
− ln

(
nc∑
r=1

zrk

)
+ lnPi. (17)

The term
∑nc

r=1 zrk in (17) is calculated by the addition and subtraction highlighted
in (15) and (16) above, since a single component only is modified in the given pertur-
bation mechanism. The term involving Pi is a constant for each component, and the
term in the numerator of the fraction in (17) can also be calculated by such addition
and subtraction. Thus, the total number of arithmetical operations required to update
the vapour phase Gibbs free energy term is a constant, O(1), independent of number
of components nc. This is because the ideal form assumed for vapour phase Gibbs
free energy involves no component interactions. Such interactions, modelled by the
more complex expression (4) for NRTL component interactions, involve more inten-
sive computation to derive the effects of perturbation, as highlighted in the following
discussion.

For a general perturbed component vector of species, if the phases specified for
the interchange of mole numbers are both liquid, e.g., from a liquid phase to another
liquid phase, etc., the function (4) can be updated in a way similar to the previous
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case. Note that the expression (4) can be simplified by substituting mole numbers for
mole fractions, and then simplifying, to yield

GkL =
nc∑
i=1

xik

(
nc∑
j=1

zjkmij∑nc
l=1 zlkφlj

+ lnxik + lnP sat
i

)

=GkV +
nc∑
i=1

xik

(
nc∑
j=1

zjkmij∑nc
l=1 zlkφlj

)
. (18)

By writing Pi = P sat
i in (18), and so interchanging the order of summation and making

a last substitution, this is equal to

GkV +
1∑nc

r=1 zrk

nc∑
j=1

zjk∑nc
l=1 zlkφlj

nc∑
i=1

zikmij. (19)

Thus, the update of (4) can be calculated after perturbation, if the given pertur-
bation mechanism of (15) and (16) is used, by use of (19). The rightmost sum in (19)
under perturbation, for each j, can be calculated by a single addition and subtraction
of perturbed and pre-perturbed zikmij values, respectively; for each j, this requires
2 arithmetical operations. The denominator in the fraction of (19) can, for each j,
be modified similarly, i.e., with 2 arithmetical operations of addition and subtraction.
Thus, the two inner sums of (19) are modified in O(nc) operations using the perturba-
tion mechanism defined, despite the fact that the NRTL equation is a means of calcu-
lating highly complex Gibbs energy terms using matrix functions (of z) for component
physical properties in (6)–(10). The overall computational effort required to update (19)
is therefore dominated by that for the NRTL equation, O(nc), when compared to that for
the vapour phase Gibbs energy also contained in (19), which is O(1) as derived above.

3.3. Examples of algorithm parametrisation and use

Having described the extensions to the new method, and highlighted the modi-
fications to function calculation, solution representation, algorithm operators and cost
function update contained in these extensions, we proceed to present the numerical re-
sults of testing the above method on two well-known and difficult examples from the
literature. It should be clear from the given examples that both problems are relatively
small in terms of number of components; an important expression of the difficulty of
the chemical and phase equilibria problem is that it is difficult to find test problems in
the literature which have been solved to (guaranteed) optimality by another method,
and yet which are large enough to test the full generality of new approaches.

However, these examples are used here because they are sufficiently small to
enable a complete exposition of the algorithm parametrisation for these cases, and yet
possess multiple local minima, meaning that most existing mathematical techniques
for their solution are not sufficiently powerful. Also, the examples have been com-
pletely solved using other techniques, thus facilitating a direct comparison of execution
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times and nearness to optimality (two common measures often combined to estimate
minimisation algorithm performance) between the methods here and those in the lit-
erature. Finally, both problems represent important industrial problems and possess
multi-species in multi-phase, with molecular interactions in the liquid phases.

Example 1. This example is given in McKinnon et al. [4], where it is solved to opti-
mality, and in McDonald and Floudas [3], where it is again solved using different meth-
ods. The problem has component list {butyl-acetate, water}, so that nc = 2. The prob-
lem concerns determining the amounts of both components in two liquid phases (hence,
‘liquid–liquid equilibrium’). Here, using our notation of the previous section, V = 0
and L = 2. The table of algorithm parameters mentioned in (6)–(10) is given below
(see table 1), taken from McKinnon et al. [4] with appropriate modification of symbols.

The set of parameters found suitable for use within the SA/GIBBS algorithm were,
T0 = 10.0, T∞ = 1.0 × 10−8, which under the usual geometric SA schedule gives
rise to 20 713 algorithm iterations. However, such iterations in no way correspond in
computational requirements to those of McKinnon et al. [4], due to the specialised per-
turbation operator described in the previous section. In this way, the algorithm is able
to carry out a relatively large number of low-effort iterations within a short period of
time. The algorithms of McKinnon et al. [4] typically feature a relatively low amount
of relatively large-effort iterations. The perturbation step-sizes used on this example,
described in the previous section, were bounded in the usual way to retain solution
feasibility under perturbation. However, it was found that reducing the randomly cho-
sen mole interchange values improved the accuracy of the method considerably, which
is important when searching for trace amounts of certain species, as in column z11

above. Using the notation of the previous section, a suitable scaling was found to be
ε = ε/10.0. For the purposes of testing the new method, 10 algorithm runs were car-
ried out; the results of these are given in table 2 together with a summary of statistics.

The accuracy of our method is judged first and foremost by the mean cost statistic.
Clearly, the mean cost of these runs compares very favourably with the optimal result
given in McKinnon et al. [4] and McDonald and Floudas [3], of −0.0201983; the
difference is in the seventh decimal place. In fact, the cost of the solutions obtained
in runs 1–7 and 10, calculated using FORTRAN 77 double precision computation,
is lower than the ‘optimal’ solution of the cited works, which is derived within a
tolerance of 10−5, i.e., only 5 decimal places. However, admittedly the variation in
the corresponding solutions, for our improvements, is low.

Table 1
Example 1. Data.

i j tij φij αij Zi (mol)

1 2 3.00498 0.30794 0.39196 0.5
2 1 4.69071 0.15904 0.39196 0.5
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Table 2
Results of SA/GIBBS on example 1. Data.

Run Cost z11 z12 z21 z22

1 −0.020200068 0.000699683 0.4992999 0.1555096 0.3444904
2 −0.020199883 0.000689591 0.49931 0.1555302 0.3444698
3 −0.020199741 0.000684327 0.4993153 0.1549931 0.3450069
4 −0.020199711 0.000683097 0.4993165 0.1554161 0.3445839
5 −0.020200093 0.000701959 0.4992976 0.1558079 0.3441921
6 −0.020198889 0.00066321 0.4993364 0.1553784 0.3446216
7 −0.020199946 0.000692366 0.4993072 0.1554123 0.3445877
8 −0.020198172 0.000649937 0.4993497 0.1545425 0.3454575
9 −0.020180625 0.000522977 0.4994766 0.1519692 0.3480308

10 −0.020199619 0.000680448 0.4993192 0.1548428 0.3451572
Mean −0.020197675 0.00066676 0.49933284 0.15494021 0.3450597
SD 6.02054E−06 5.29486E−05 5.29471E−05 0.001108748 0.0011087
CV −0.029808078 7.94117829 0.010603565 0.715597016 0.3213204

Figure 1.

The reliability of our method on this problem is also excellent. This can be
judged from the summary statistics relating to the standard deviation and coefficient of
variation (CV). The CV shows here how the cost of the best solutions obtained by the
method during the trials varied. The CV for cost is 0.03% (or 3 in 10 000), which is
very low and indicates a high degree of consistency in finding near-optimal solutions.
The CV for the actual solutions shows a maximum for the variation of component 1 in
phase 1, and is 7%, which is again consistent relative to the exceptionally low values of
this variable in all near-optimal solutions found. Again, the locations of the solutions
found here agree very well with those of the cited works. A typical time series of the
run of the SA/GIBBS algorithm on this example is given in figure 1, which graphs the
cost of the current solution against algorithm iteration.
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Example 2. The second example presented here is also discussed in the cited works
of example 1, in both cases solving the problem to guaranteed optimality. This
is a ‘liquid–liquid–vapour equilibrium’ problem involving the species {benzene-
acetonitrile-water}, so that each component of this species list can exist simultaneously
in a vapour and/or two liquid phases. In this case nc = 3, and using our own notation,
V = 1 and L = 2. McKinnon et al. [4] describe how to derive the appropriate parame-
ters for use in equations (4) and (5), via substitution in (6)–(10). The t values, given
in table 3 below, have been derived from the following expression given in McKinnon
et al. [4]:

tij =
gij − gjj
RT

, R = 1.9872 cal/K/mol, T = 333 K. (20)

The tij values from this equation are listed in table 2, where it is assumed that
tii = 0 as in (10). The gij values in (20) are found from tables 3 and 4, where this
data is again taken from McKinnon et al. [4]. Table 5 contains the rest of the data for
the problem. Again, 10 runs of the algorithm were presented on this more difficult
problem. The parameters used in this problem are the same as in example 1.

Table 3
Values for tij in example 2.

tij j = 1 j = 2 j = 3

i = 1 0.0 1.508453 5.868187
i = 2 0.099344 0.0 0.54942
i = 3 5.817366 1.90770 0.0

Table 4
Values used to calculate t in example 2.

i j gij − gjj gji − gii αij

1 2 998.20 65.74 0.88577
1 3 3883.20 3849.57 0.24698
2 3 363.57 1262.40 0.3565

Table 5
Remaining problem data in example 2.

i P sat
i Pi (atm.) Zi (mol)

1 0.512337709 0.769 0.34483
2 0.485404650 0.769 0.31034
3 0.195255785 0.769 0.34843



36 D. Reynolds et al. / Chemical and phase equilibria via simulated annealing

4. Summary and conclusions

Following on from condensation modelling [2,5], and the model solution tech-
niques presented [6], we have discussed how to solve difficult computational min-
imisation problems related to heat exchanger fouling models, in a way which can
incorporate the physical properties of the species involved in these systems, includ-
ing phase change, multi-phase conditions and phase and chemical equilibria problems.
This work, based upon the extensions of the novel SA approach for Gibbs free energy
minimisation, is able to take account of the complexities introduced by the existence
of a large number of chemically reacting species present in a variety of phases and
over a large range of temperatures, pressures and system feed compositions. This is
done in a way which exploits the advantages of current approaches to the solution of
this problem, such as the utilisation of the concept of chemical stoichiometry, whilst
avoiding most of the disadvantages.

In summary, we have presented a method for the solution of chemical and phase
equilibria problems which can be identified with the following advantages:

(i) the algorithm can handle any Gibbs potential function and any combination of
such functions;

(ii) any equation of state can be used;

(iii) the algorithm iterations are efficient;

(iv) gradient singularities, a problem commonly found in standard techniques, do not
occur;

(v) convergence of the algorithm to a local minima of the Gibbs function can be
avoided; and

(vi) the final solution produced by the algorithm is independent of starting conditions.

Acknowledgements

This work was funded by The Commission of the European Communities in the
framework of the JOULE II programme (Contract JOU2-CT92-0070).

References

[1] J.D. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New
York, 1954).

[2] J.D. Isdale, P. Mercier, J.M. Grillot, A.J. Mulholland and J. Gomatam, Appl. Therm. Engrg. (to
appear).

[3] C. McDonald and C. Floudas, in: Escape 4: 4th European Symposium on Computer Aided Process
Engineering, IChemE Symposium Series, Vol. 133 (Institution of Chemical Engineers, 1994) p. 273.

[4] K. McKinnon and M. Mongeau, A generic global optimisation algorithm for the chemical and phase
equilibrium problem, Internal Report, Dept. Mathematics and Statistics, University of Edinburgh
(1994).



D. Reynolds et al. / Chemical and phase equilibria via simulated annealing 37

[5] A.J. Mulholland, J. Gomatam and A. Jenkins, J. Rev. Gen. Therm. (to appear).
[6] A.J. Mulholland, D. Reynolds and J. Gomatam, Minimisation of Gibbs free energy via simulated

annealing, Internal Report, Dept. Mathematics, Glasgow Caledonian University (1996).
[7] R.H.J.M. Otten and L.P.P.P. van Ginneken, The Annealing Algorithm (Kluwer, New York, 1989).
[8] D.E. Rosner, B. Chen, G.C. Fryburg and F.J. Kohl, Comb. Sci. Technol. 20 (1979) 87.
[9] W.R. Smith and R.W. Missen, Chemical Reaction Equilibrium Analysis: Theory and Algorithms

(Wiley, New York, 1982).
[10] J.A. Trangenstein, Chem. Engrg. Sci. 42(12) (1987) 2847.


